
数据结构（C语言版）（第2版）

遍历二叉树
主讲教师：汪红松

树和二叉树

教 学 内 容

1

2

3

4

5

6

树和二叉树的定义

二叉树的性质和存储结构

遍历二叉树

线索二叉树

树和森林

哈夫曼树及其应用

Contents

一、遍历二叉树和线索二叉树
1.遍历定义

二叉树的遍历是指从根结点出发，按照某种次序访问二

叉树中的所有结点，使得每个结点被访问一次且仅被访

问一次。

二叉树遍历操作的结果？ 非线性结构线性化

抽象操作，可以是对结点进行的各种处理，
这里简化为输出结点的数据。

前序遍历
中序遍历
后序遍历

层序遍历

一、遍历二叉树和线索二叉树

二叉树的遍历方式：

DLR、LDR、LRD、

DRL、RDL、RLD
如果限定先左后右，则二叉树遍历方式有三种：

前序：DLR
中序：LDR
后序：LRD
层序遍历：按二叉树的层序编号的次序访问各结点。

2.二叉树的组成：

根结点D
左子树L
右子树R

二
叉
树

一、遍历二叉树和线索二叉树

（1）前序（根）遍历

若二叉树为空，则空操作返回；
否则：

①访问根结点；

②前序遍历根结点的左子树；

③前序遍历根结点的右子树。

前序遍历序列：A B D G C E F

A

B C

D E F

G

3.二叉树的遍历操作 遍历的操作定义是递归的

一、遍历二叉树和线索二叉树

（2）中序（根）遍历

若二叉树为空，则空操作返回；
否则：

①中序遍历根结点的左子树；

②访问根结点；

③中序遍历根结点的右子树。

中序遍历序列：D G B A E C F

A

B C

D E F

G

3.二叉树的遍历操作

一、遍历二叉树和线索二叉树

（3）后序（根）遍历

若二叉树为空，则空操作返回；
否则：

①后序遍历根结点的左子树；

②后序遍历根结点的右子树；

③访问根结点。

后序遍历序列：G D B E F C A

A

B C

D E F

G

3.二叉树的遍历操作

一、遍历二叉树和线索二叉树

（4）层序遍历

 二叉树的层次遍历是指

从二叉树的第一层（即根结

点）开始，从上至下逐层遍

历，在同一层中，则按从左

到右的顺序对结点逐个访问

。
层序遍历序列：A B C D E F G

A

B C

D E F

G

3.二叉树的遍历操作 前序(中序、后序)遍历都是深
度优先策略，层序遍历则是
广度优先策略

一、遍历二叉树和线索二叉树

二叉树遍历操作例子

前序遍历结果：- + a * b - c d / e f

中序遍历结果：a + b * c - d - e / f

后序遍历结果：a b c d - * + e f / -

表达式的前序、中序和后序遍历为表达式前缀表示
（波兰式）、中缀表示和后缀表示（逆波兰式）。

表达式 a + b * (c - d) – e / f 对应的二叉树

一、遍历二叉树和线索二叉树

若已知一棵二叉树的前序（或中序，或后序，或层序）序
列，能否唯一确定这棵二叉树呢？

 例：已知前序序列为ABC，则可能的二叉树有5种。若其后
序遍历序列为CBA，则下列二叉树都满足条件。

A

B

C

A

B

C

3.二叉树的遍历操作

(a) (b)

A

B C

A

B

C

A

B

C

A

B

C

A

B

C

一、遍历二叉树和线索二叉树

若已知一棵二叉树的前序序列和中序序列，能否
唯一确定这棵二叉树呢？怎样确定？

 例如：已知一棵二叉树的前序遍历序列和中序遍
历序列分别为ABCDEFGHI 和BCAEDGHFI，如何
构造该二叉树呢?

其他结点前序序列

中序序列

根

右子树根左子树

一、遍历二叉树和线索二叉树

前序：A B C D E F G H I中
序：B C A E D G H F I

前序：B C
中序：B C

B C

D E
F G
H I

A

前序： D E F G H I
中序： E D G H F I

A

B

C

D

E
FG
HI

一、遍历二叉树和线索二叉树

前序：F G H I
中序：G H F I

前序： D E F G H I
中序： E D G H F I

A

B

C

D

E
FG
HI

A

B

C

D

E F

IG

H

二、遍历二叉树和线索二叉树

（1）根据前序序列的第一个元素建立根结点；

（2）在中序序列中找到该元素，确定根结点的左右子树

的中序序列；

（3）在前序序列中确定左右子树的前序序列；

（4）由左子树的前序序列和中序序列建立左子树；

（5）由右子树的前序序列和中序序列建立右子树。

 已知一棵二叉树的前序序列和中序序列，构造该二叉

树的过程如下：

1.根据遍历序列确定二叉树

由二叉树的前序序列和中序序列，或由其后序序列和中序序列均能唯
一确定一棵二叉树。

Status PreOrderTraverse(BiTree T){ //前序遍历

 if(T==NULL) return OK; //空二叉树

 else{
 cout<<T->data; //访问根结点

 PreOrderTraverse(T->lchild); //递归遍历左子树

 PreOrderTraverse(T->rchild); //递归遍历右子树 }
}

Status InOrderTraverse(BiTree T){ //中序遍历

 if(T==NULL) return OK; //空二叉树

 else{
 InOrderTraverse(T->lchild); //递归遍历左子树

 cout<<T->data; //访问根结点

 InOrderTraverse(T->rchild); //递归遍历右子树 }
}

Status PostOrderTraverse(BiTree T){ //后序遍历

 if(T==NULL) return OK; //空二叉树

 else{
 PostOrderTraverse(T->lchild); //递归遍历左子树

 PostOrderTraverse(T->rchild); //递归遍历右子树

 cout<<T->data; //访问根结点 }
}

二、遍历算法的分析

 如果去掉输出语句，从递归的角度看，三种算法是
完全相同的，或说这三种算法的访问路径是相同的，只
是访问结点的时机不同。

从虚线的出发点到终点的路径
上，每个结点经过3次。

A

F

ED

CB

G

第1次经过时访问＝先序遍历
第2次经过时访问＝中序遍历
第3次经过时访问＝后序遍历

二、遍历算法的分析

A

F

ED

CB

G

时间效率:O(n)
//每个结点只访问一次

空间效率:O(n)
//栈占用的最大辅助空间

二、遍历算法的分析

1.按先序遍历序列建立二叉树的二叉链表

2.计算二叉树结点总数

3.计算二叉树叶子结点总数

4.计算二叉树深度

三、二叉树遍历算法的应用

三、二叉树遍历算法的应用

扩展二叉树的前序遍历序列:A B # D # # C # #

D

B

A

C

D

B

A

C

#

#

1.构造函数——建立二叉树

为了建立一棵二叉树，将二叉树中每个结点的空指针引出一个
虚结点，其值为一特定值如“#”，以标识其为空，把这样处
理后的二叉树称为原二叉树的扩展二叉树。

三、二叉树遍历算法的应用

设二叉树中的结点均为一个字符。假设扩展二叉树的

前序遍历序列由键盘输入，root为指向根结点的指针

，二叉链表的建立过程是：

首先输入根结点，若输入的是一个“#”字符，则表明

该二叉树为空树，即root=NULL；否则输入的字符应

该赋给root->data,，之后依次递归建立它的左子树和

右子树 。

1.构造函数——建立二叉树

void CreateBiTree(BiTree &T）{
cin>>ch;
if (ch==’#’) T=NULL; //递归结束，建空树
else{
 T=new BiTNode; T-＞data=ch; //生成根结点
 CreateBiTree(T-＞lchild); //递归创建左子树
 CreateBiTree(T-＞rchild); //递归创建右子树
 }
}

——二叉树的建立三、二叉树遍历算法的应用

2.计算二叉树结点总数

三、二叉树遍历算法的应用

Ø如果是空树，则结点个数为0；
Ø否则，结点个数为左子树的结点个数+右子树的结点个数再

+1。

///计算二叉树结点总数
int NodeCount(BiTree T){
 if(T == NULL) return 0;
 else return NodeCount(T->lchild)+NodeCount(T->rchild)+1;
}

3.计算二叉树叶子结点总数

三、二叉树遍历算法的应用

Ø如果是空树，则叶子结点个数为0；
Ø否则，为左子树的叶子结点个数+右子树的叶子结点个数

int LeadCount(BiTree T){
 if(T==NULL) //如果是空树返回0

return 0;
if (T->lchild == NULL && T->rchild == NULL)

return 1; //如果是叶子结点返回1
else return LeafCount(T->lchild) + LeafCount(T->rchild) ;

}

4.计算二叉树深度

三、二叉树遍历算法的应用

Ø如果是空树，则深度为0；

Ø否则，递归计算左子树的深
度记为m，递归计算右子树
的深度记为n，二叉树的深
度则为m与n的较大者加1。

int Depth(BiNode *root)
{
 if (root == NULL) return 0;
 else {
 hl= Depth(root->lchild);
 hr= Depth(root ->rchild);
 return max(hl, hr)+1;
 }
}

小结

1. 遍历二叉树的算法步骤
2. 根据二叉树遍历序列确定二叉树的方法
3. 二叉树遍历算法的几个应用

