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一、遍历二叉树和线索二叉树
1.遍历定义

二叉树的遍历是指从根结点出发，按照某种次序访问二

叉树中的所有结点，使得每个结点被访问一次且仅被访

问一次。

二叉树遍历操作的结果？ 非线性结构线性化

抽象操作，可以是对结点进行的各种处理，
这里简化为输出结点的数据。

前序遍历
中序遍历
后序遍历

层序遍历 



一、遍历二叉树和线索二叉树

二叉树的遍历方式：

DLR、LDR、LRD、

DRL、RDL、RLD 
如果限定先左后右，则二叉树遍历方式有三种：

前序：DLR
中序：LDR
后序：LRD
层序遍历：按二叉树的层序编号的次序访问各结点。 

2.二叉树的组成：

根结点D
左子树L
右子树R

二
叉
树



一、遍历二叉树和线索二叉树

（1）前序（根）遍历

若二叉树为空，则空操作返回；
否则：

①访问根结点；

②前序遍历根结点的左子树；

③前序遍历根结点的右子树。

前序遍历序列：A B D G C E F

A

B C

D E F

G

3.二叉树的遍历操作 遍历的操作定义是递归的



一、遍历二叉树和线索二叉树

（2）中序（根）遍历

若二叉树为空，则空操作返回；
否则：

①中序遍历根结点的左子树；

②访问根结点；

③中序遍历根结点的右子树。 

中序遍历序列：D G B A E C F

A

B C

D E F

G

3.二叉树的遍历操作 



一、遍历二叉树和线索二叉树

（3）后序（根）遍历

若二叉树为空，则空操作返回；
否则：

①后序遍历根结点的左子树；

②后序遍历根结点的右子树；

③访问根结点。

后序遍历序列：G D B E F C A

A

B C

D E F

G

3.二叉树的遍历操作 



一、遍历二叉树和线索二叉树

（4）层序遍历

        二叉树的层次遍历是指

从二叉树的第一层（即根结

点）开始，从上至下逐层遍

历，在同一层中，则按从左

到右的顺序对结点逐个访问

。 
层序遍历序列：A B C D E F G

A

B C

D E F

G

3.二叉树的遍历操作 前序(中序、后序)遍历都是深
度优先策略，层序遍历则是
广度优先策略



一、遍历二叉树和线索二叉树

二叉树遍历操作例子

前序遍历结果：- + a * b - c d / e f

中序遍历结果：a + b * c - d - e / f

后序遍历结果：a b c d - * + e f / -

表达式的前序、中序和后序遍历为表达式前缀表示
（波兰式）、中缀表示和后缀表示（逆波兰式）。

表达式 a + b * (c - d) – e / f 对应的二叉树



一、遍历二叉树和线索二叉树

若已知一棵二叉树的前序（或中序，或后序，或层序）序
列，能否唯一确定这棵二叉树呢？

        例：已知前序序列为ABC，则可能的二叉树有5种。若其后
序遍历序列为CBA，则下列二叉树都满足条件。

A

B

C

A

B

C

3.二叉树的遍历操作 

(a) (b)

A

B C

A

B

C

A

B

C

A

B

C

A

B

C



一、遍历二叉树和线索二叉树

若已知一棵二叉树的前序序列和中序序列，能否
唯一确定这棵二叉树呢？怎样确定？ 

    例如：已知一棵二叉树的前序遍历序列和中序遍
历序列分别为ABCDEFGHI 和BCAEDGHFI，如何
构造该二叉树呢? 

其他结点前序序列

中序序列

根

右子树根左子树



一、遍历二叉树和线索二叉树

前序：A B C D E F G H I中
序：B C A E D G H F I

前序：B C
中序：B C

  
B C 

D  E
F  G
H  I

A

前序： D E F G H I
中序： E D G H F I

A

B

C

D

E
FG
HI



一、遍历二叉树和线索二叉树

前序：F G H I
中序：G H F I

前序： D E F G H I
中序： E D G H F I

A

B

C

D

E
FG
HI

A

B

C

D

E F

IG

H



二、遍历二叉树和线索二叉树

（1）根据前序序列的第一个元素建立根结点；

（2）在中序序列中找到该元素，确定根结点的左右子树

的中序序列；

（3）在前序序列中确定左右子树的前序序列；

（4）由左子树的前序序列和中序序列建立左子树；

（5）由右子树的前序序列和中序序列建立右子树。  

    已知一棵二叉树的前序序列和中序序列，构造该二叉

树的过程如下： 

1.根据遍历序列确定二叉树

由二叉树的前序序列和中序序列，或由其后序序列和中序序列均能唯
一确定一棵二叉树。



Status PreOrderTraverse(BiTree T){       //前序遍历

  if(T==NULL) return OK; //空二叉树

  else{    
     cout<<T->data; //访问根结点

     PreOrderTraverse(T->lchild); //递归遍历左子树

     PreOrderTraverse(T->rchild); //递归遍历右子树    }
}

 
Status InOrderTraverse(BiTree T){   //中序遍历

  if(T==NULL) return OK; //空二叉树

  else{    
     InOrderTraverse(T->lchild); //递归遍历左子树

     cout<<T->data; //访问根结点

     InOrderTraverse(T->rchild); //递归遍历右子树    }
}

Status PostOrderTraverse(BiTree T){   //后序遍历

  if(T==NULL) return OK; //空二叉树

  else{    
     PostOrderTraverse(T->lchild); //递归遍历左子树

     PostOrderTraverse(T->rchild); //递归遍历右子树

     cout<<T->data; //访问根结点    }
}

二、遍历算法的分析



        如果去掉输出语句，从递归的角度看，三种算法是
完全相同的，或说这三种算法的访问路径是相同的，只
是访问结点的时机不同。

从虚线的出发点到终点的路径
上，每个结点经过3次。

A

F

ED

CB

G

第1次经过时访问＝先序遍历
第2次经过时访问＝中序遍历
第3次经过时访问＝后序遍历

二、遍历算法的分析



A

F

ED

CB

G

时间效率:O(n) 
//每个结点只访问一次

空间效率:O(n) 
//栈占用的最大辅助空间

二、遍历算法的分析



1.按先序遍历序列建立二叉树的二叉链表

2.计算二叉树结点总数

3.计算二叉树叶子结点总数

4.计算二叉树深度

三、二叉树遍历算法的应用



三、二叉树遍历算法的应用

扩展二叉树的前序遍历序列:A B # D # # C # #

D

B

A

C

# D

B

A

C

# #

# #

1.构造函数——建立二叉树

为了建立一棵二叉树，将二叉树中每个结点的空指针引出一个
虚结点，其值为一特定值如“#”，以标识其为空，把这样处
理后的二叉树称为原二叉树的扩展二叉树。 



三、二叉树遍历算法的应用

设二叉树中的结点均为一个字符。假设扩展二叉树的

前序遍历序列由键盘输入，root为指向根结点的指针

，二叉链表的建立过程是：

首先输入根结点，若输入的是一个“#”字符，则表明

该二叉树为空树，即root=NULL；否则输入的字符应

该赋给root->data,，之后依次递归建立它的左子树和

右子树 。

1.构造函数——建立二叉树



void CreateBiTree(BiTree &T）{
cin>>ch;
if (ch==’#’)   T=NULL;  //递归结束，建空树
else{
    T=new BiTNode;    T-＞data=ch; //生成根结点
    CreateBiTree(T-＞lchild);  //递归创建左子树
    CreateBiTree(T-＞rchild); //递归创建右子树
  }
}

——二叉树的建立三、二叉树遍历算法的应用



2.计算二叉树结点总数

三、二叉树遍历算法的应用

Ø如果是空树，则结点个数为0；
Ø否则，结点个数为左子树的结点个数+右子树的结点个数再

+1。

///计算二叉树结点总数
int NodeCount(BiTree T){
  if(T == NULL ) return 0;  
  else return NodeCount(T->lchild)+NodeCount(T->rchild)+1;
} 



3.计算二叉树叶子结点总数

三、二叉树遍历算法的应用

Ø如果是空树，则叶子结点个数为0；
Ø否则，为左子树的叶子结点个数+右子树的叶子结点个数

int LeadCount(BiTree T){
 if(T==NULL) //如果是空树返回0

return 0;
if (T->lchild == NULL && T->rchild == NULL)

return 1; //如果是叶子结点返回1
else return LeafCount(T->lchild) + LeafCount(T->rchild) ;

}



4.计算二叉树深度

三、二叉树遍历算法的应用

Ø如果是空树，则深度为0；

Ø否则，递归计算左子树的深
度记为m，递归计算右子树
的深度记为n，二叉树的深
度则为m与n的较大者加1。 

int  Depth(BiNode *root)
{
    if (root == NULL) return 0;
    else {
         hl= Depth(root->lchild);
         hr= Depth(root ->rchild);
         return max(hl, hr)+1;
    }
}



小结

1. 遍历二叉树的算法步骤
2. 根据二叉树遍历序列确定二叉树的方法
3. 二叉树遍历算法的几个应用


